Goal-oriented Optimal Approximations of Bayesian
نویسندگان
چکیده
We propose optimal dimensionality reduction techniques for the solution of goal–oriented linear–Gaussian inverse problems, where the quantity of interest (QoI) is a function of the inversion parameters. These approximations are suitable for large-scale applications. In particular, we study the approximation of the posterior covariance of the QoI as a low-rank negative update of its prior covariance, and prove optimality of this update with respect to the natural geodesic distance on the manifold of symmetric positive definite matrices. Assuming exact knowledge of the posterior mean of the QoI, the optimality results extend to optimality in distribution with respect to the Kullback-Leibler divergence and the Hellinger distance between the associated distributions. We also propose the approximation of the posterior mean of the QoI as a low-rank linear function of the data, and prove optimality of this approximation with respect to a weighted Bayes risk. Both of these optimal approximations avoid the explicit computation of the full posterior distribution of the parameters and instead focus on directions that are well informed by the data and relevant to the QoI. These directions stem from a balance among all the components of the goal–oriented inverse problem: prior information, forward model, measurement noise, and ultimate goals. We illustrate the theory using a high-dimensional inverse problem in heat transfer.
منابع مشابه
Bayesian Optimal Active Search and Surveying
We consider two active binary-classification problems with atypical objectives. In the first, active search, our goal is to actively uncover as many members of a given class as possible. In the second, active surveying, our goal is to actively query points to ultimately predict the proportion of a given class. Numerous real-world problems can be framed in these terms, and in either case typical...
متن کاملGoal-Oriented Optimal Design of Experiments for Large-Scale Bayesian Linear Inverse Problems
We develop a framework for goal oriented optimal design of experiments (GOODE) for largescale Bayesian linear inverse problems governed by PDEs. This framework differs from classical Bayesian optimal design of experiments (ODE) in the following sense: we seek experimental designs that minimize the posterior uncertainty in a predicted quantity of interest (QoI) rather than the estimated paramete...
متن کاملAn Efficient Bayesian Optimal Design for Logistic Model
Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...
متن کاملAn approach for finding fully Bayesian optimal designs using normal-based approximations to loss functions
The generation of decision-theoretic Bayesian optimal designs is complicated by the significant computational challenge of minimising an analytically intractable expected loss function over a, potentially, high-dimensional design space. A new general approach for approximately finding Bayesian optimal designs is proposed which uses computationally efficient normal-based approximations to poster...
متن کاملThe Fusion of Multiple Sources of Information in the Organization of Goal-Oriented Behavior: Spatial Attention versus Integration
In the fields of neuroscience, psychology and robotics, an important question is how to establish a unified system that will autonomously acquire both its input state space and optimal goal-oriented action policies in unknown environments. An important requirement for a such a system is to understand how multiple sources of sensory information can be integrated to support autonomous behavior. S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016